
Measurement of proton quenching factors in p-terphenyl

Miriam Matney, Rice University Advisors: Dr. Greg Christian, Dr. Cody Parker

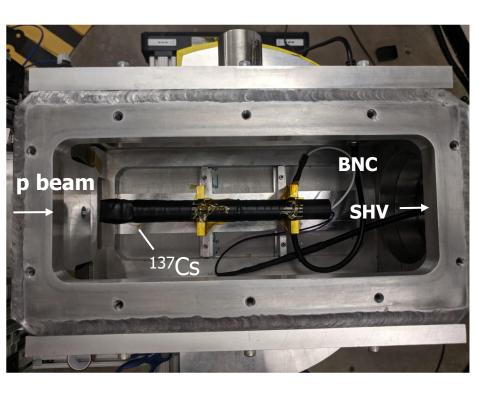
Detector principles

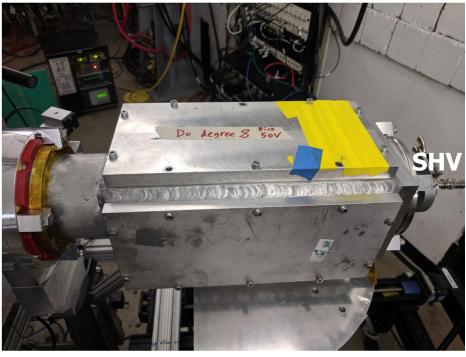
A molecule, excited by an incident particle, de-excites and releases light that can be converted into an electrical signal with a photomultiplier tube (PMT)

The solid organic scintillator used in this project, **p-terphenyl**, is bright (27,000 photons/MeVee), has a fast decay time, and has excellent pulse-shape discrimination (PSD)

Good properties for neutron detection

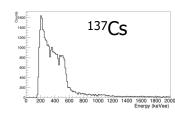
Quenching factors


- Quenching: molecular de-excitation inside scintillator that does not result in the production of light
 - Results in a measured energy in the scintillator that is lower than the incident energy
- Relevant for neutrons, protons and heavier particles that cause nuclear excitation in the scintillator that is then transferred to the molecule
- The relationship between incident particle energy and measured particle energy is the quenching function
- This project used a proton beam from the K150 cyclotron
 - Energies ranging from 3.42 MeV to 15.02 MeV

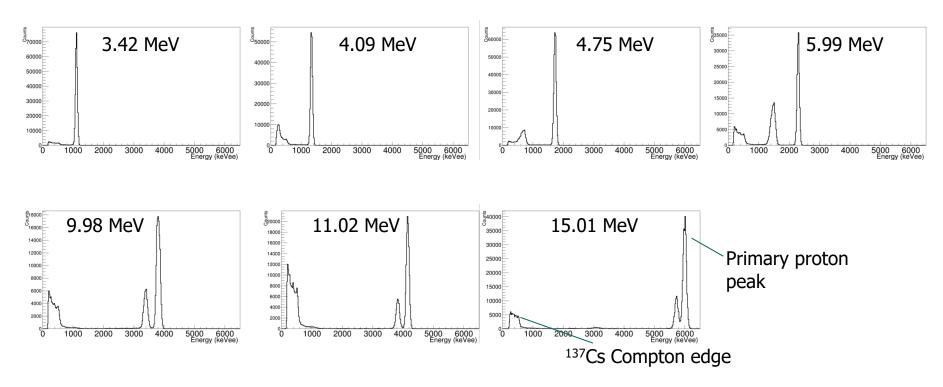

Detector construction

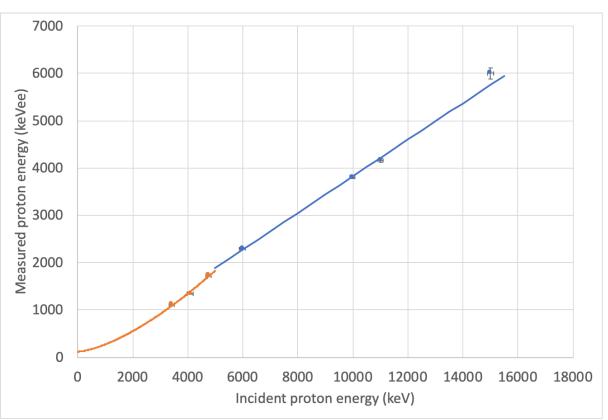
- 15x15x25 mm³ p-Terphenyl crystal
- Wrapped in Teflon; Mylar window on front face
 - Thickness is known for simple energy loss calculation with SRIM
- Attached to PMT with optical grease and wrapped in more Teflon
- Connected to base by wrapping in electrical tape for security and light-tightness

Setup on the K150 SEE-line



Beam time procedure


- Pump down to 8x10⁻⁷ torr vacuum with ¹³⁷Cs source inside chamber
- Take two ¹³⁷Cs calibrations at different gain settings
- Adjust beam flux as needed to avoid oversaturation
- Take two runs at each coarse gain, aiming for >3E05 counts
- Repeat ¹³⁷Cs calibrations each day and with each proton energy change
- Took ²⁰⁷Bi calibration under vacuum when data collection was finished and ¹³⁷Cs was removed


Proton spectra

The ¹³⁷Cs calibration source remained in the chamber during proton data collection

Quenching relation

 $E_r < 5 \text{ MeV}$: $E_e = (4.85 \times 10^{-3} \pm 5.3 \times 10^{-4}) E_r^{3/2} + (121 \pm 137)$

 $E_r > 5 \text{ MeV}$: $E_e = (0.387 \pm 0.011)E_r - (39.5\pm97.8)$

 E^{3/2} relation for <5 MeV protons as expected from literature (2)

Uncertainty in beam energy is ± 0.1 MeV. Error in measured proton energy is due to the channel-to-energy relation determined from the calibration sources.

Future directions

- Inspect waveforms from proton data and compare PSD for protons and photons (from ¹³⁷Cs)
- Investigate possible phosphorescence that may have occurred at higher proton energies

References

- (1) Stanford University Scintillator Materials webpage
- (2) Glenn F. Knoll, Radiation Detection and Measurement, 4th ed.